
rcontrol Documentation
Release 0.1.3

Julien Pagès

June 18, 2015

Contents

1 Tutorial 3
1.1 Executing a command on a remote host . 3
1.2 Synchronizing commands . 4
1.3 Executing local commands . 4
1.4 Executing commands on multiple hosts . 4
1.5 More on commands synchronisation . 5
1.6 Copy files and directories between hosts . 7

2 API 9
2.1 Sessions . 9
2.2 Tasks . 11

i

ii

rcontrol Documentation, Release 0.1.3

rcontrol is a python library to execute commands on remote hosts via ssh. It is built using paramiko, and unlike fabric
it provide easy ways to crontrol the order of execution for parallelisation.

Contents 1

rcontrol Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Tutorial

Learning guide for basic usage of rcontrol.

1.1 Executing a command on a remote host

To execute a command, you first need to create a session. A session is usually used inside a with block, to ensure that
all tasks will finish and that the connection will be closed at the end.

from rcontrol.ssh import ssh_client, SshSession

create a ssh connection. This basically create a connected
paramiko.SSHClient instance.
conn = ssh_client('localhost', 'jp', 'jp')

execute the command
with SshSession(conn) as session:

session.execute("uname -a")

outside the with statement, all tasks are done and the connection
is automatically closed.

If you ran this snippet, you will see nothing on the screen. This is because there is no handler defined for the command
output:

from rcontrol.ssh import ssh_client, SshSession

def on_finished(task):
print("finished (exit code: %d) !" % task.exit_code())

def on_output(task, line):
print("output: %s" % line)

conn = ssh_client('localhost', 'jp', 'jp')

with SshSession(conn) as session:
session.execute("uname -a", on_stdout=on_output, on_finished=on_finished)

Output:

output: Linux JP-Precision-T1500 3.13.0-39-generic #66-Ubuntu SMP Tue Oct 28 13:30:27 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
finished (exit code: 0) !

3

rcontrol Documentation, Release 0.1.3

See also:

Sessions, Tasks.

1.2 Synchronizing commands

Here is an example of how to synchronize tasks. To run two commands in parallel, then wait for them to finish an run
a last command after that:

from rcontrol.ssh import ssh_client, SshSession

conn = ssh_client('localhost', 'jp', 'jp')

with SshSession(conn) as session:
this will run in parallel
task1 = session.execute("sleep 1; touch /tmp/rcontrol1.test")
task2 = session.execute("sleep 1; touch /tmp/rcontrol2.test")

now wait for the commands to complete
task1.wait()
task2.wait()
or session.wait_for_tasks()

and do something else
session.execute("rm /tmp/rcontrol{1,2}.test")
no need to wait for this task, it will be done automatically
since we are in the with block

See also:

More on commands synchronisation

1.3 Executing local commands

Local commands can be executed in the same way as remote ones. Just use a rcontrol.local.LocalSession:

from rcontrol.local import LocalSession

with LocalSession() as session:
session.execute("touch /tmp/stuff")

1.4 Executing commands on multiple hosts

It is recommended to use a session manager to work with multiple hosts at the same time:

from rcontrol.ssh import SshSession, ssh_client
from rcontrol.core import SessionManager

with SessionManager() as sessions:
create sessions
sessions.bilbo = SshSession(

ssh_client('http://bilbo.domain.com', 'user', 'pwd'))
sessions.nazgul = SshSession(

4 Chapter 1. Tutorial

rcontrol Documentation, Release 0.1.3

ssh_client('http://nazgul.domain.com', 'user', 'pwd'))

run commands in parallel
sessions.bilbo.execute("someLongCommand")
sessions.nazgul.execute("anotherCommand")

wait for these commands to finish, then run a last one
sessions.wait_for_tasks()

sessions.nazgul.execute("echo 'Done !'")

1.5 More on commands synchronisation

Let’s say we have to execute some commands on multiple hosts:

T1, T2, T3 will be started at the same time. Once T1 is finished, T11 and T12 tasks must be started. Once T11, T12
and T2 are finished, T4 must be started. Finally, we can start T5 once T4 and T3 are finished.

T1, T11, T12, T5 must be executed on atlas2.

T2, T4 must be executed on bilbo.

T3 must be executed on nazgul.

1.5. More on commands synchronisation 5

rcontrol Documentation, Release 0.1.3

BEGIN

atlas2:T1 bilbo:T2 nazgul:T3

atlas2:T11 atlas2:T12

bilbo:T4

atlas2:T5

END

Here is a possible implementation:

from rcontrol.ssh import SshSession, ssh_client
from rcontrol.core import SessionManager

def show(task, line):
LOG.info('%s: %s', task.session, line)

with SessionManager() as sessions:
create sessions
sessions.atlas2 = SshSession(

ssh_client('http://atlas2.domain.com', 'user', 'pwd'))
sessions.bilbo = SshSession(

ssh_client('http://bilbo.domain.com', 'user', 'pwd'))
sessions.nazgul = SshSession(

6 Chapter 1. Tutorial

rcontrol Documentation, Release 0.1.3

ssh_client('http://nazgul.domain.com', 'user', 'pwd'))

def sub_build(task):
task.session.execute("echo 'task 11'", on_stdout=show)
task.session.execute("echo 'task 12'", on_stdout=show)

sessions.atlas2.execute("echo 'task 1'", on_finished=sub_build, on_stdout=show)
sessions.bilbo.execute("echo 'task 2'", on_stdout=show)
sessions.nazgul.execute("echo 'task 3'", on_stdout=show)

wait for tasks on atlas2 and bilbo
note that the build 3 task on nazgul still run in the background
sessions.atlas2.wait_for_tasks()
sessions.bilbo.wait_for_tasks()

now run another build
sessions.bilbo.execute("echo 'task 4'", on_stdout=show)

wait for task 3 and 4 (all active tasks)
sessions.wait_for_tasks()

and finally run a last task
sessions.atlas2.execute("echo 'task 5'", on_stdout=show)

Note: In this example, errors are not handled. If an error occurs during a task execution, following tasks won’t be
executed and the error(s) will be raised as soon as possible.

1.6 Copy files and directories between hosts

Here is an example that show how to copy files and directories accros computer. Note that you can use the
rcontrol.local.LocalSession to get or put files and directories locally.

from rcontrol.ssh import SshSession, ssh_client
from rcontrol.core import SessionManager

with SessionManager() as sessions:
create sessions
sessions.bilbo = SshSession(

ssh_client('http://bilbo.domain.com', 'user', 'pwd'))
sessions.nazgul = SshSession(

ssh_client('http://nazgul.domain.com', 'user', 'pwd'))

copy a file on nazgul, block until it is done
sessions.bilbo.s_copy_file('/tmp/stuff', sessions.nazgul, '/tmp/stuff')

copy recursive dirs in a non blocking way (you can synchronize it just
like commands)
Note that the destination folder /tmp/dir on nazgul must not exists
sessions.bilbo.copy_dir('/home/my/dir', sessions.nazgul, '/tmp/dir')

See also:

rcontrol.core.BaseSession

1.6. Copy files and directories between hosts 7

rcontrol Documentation, Release 0.1.3

8 Chapter 1. Tutorial

CHAPTER 2

API

2.1 Sessions

A session represent a connection on a remote or local machine.

2.1.1 BaseSession

class rcontrol.core.BaseSession(auto_close=True)
Represent an abstraction of a session on a remote or local machine.

close()
Close the session.

copy_dir(*args, **kwargs)
Asynchronous version of s_copy_dir().

This method returns an instance of a ThreadableTask.

Note that you can use the on_done keyword argument to define a callback that will be called at the end of
the execution (see the Task constructor).

copy_file(*args, **kwargs)
Asynchronous version of s_copy_file().

This method returns an instance of a ThreadableTask.

Note that you can use the on_done keyword argument to define a callback that will be called at the end of
the execution (see the Task constructor).

execute(command, **kwargs)
Execute a command in an asynchronous way.

Return an instance of a subclass of a CommandTask.

Parameters

• command – the command to execute (a string)

• kwargs – named arguments passed to the constructor of the class:CommandTask sub-
class.

exists(path)
Return True if the path exists. Equivalent to os.path.exists.

isdir(path)
Return True if the path is a directory. Equivalent to os.path.isdir.

9

rcontrol Documentation, Release 0.1.3

islink(path)
Return True if the path is a link. Equivalent to os.path.islink.

mkdir(path)
Create a directory. Equivalent to os.mkdir.

open(filename, mode=’r’, bufsize=-1)
Return an opened file object.

Parameters

• filename – the file path to open

• mode – the mode used to open the file

• bufsize – buffer size

s_copy_dir(src, dest_session, dest, chunk_size=16384)
Recursively copy a directory from a session to another one.

dest must not exist, it will be created automatically.

Parameters

• src – path of the dir to copy in this session

• dest_session – session to copy to

• dest – path of the dir to copy in the dest session (must not exists)

s_copy_file(src, dest_os, dest, chunk_size=16384)
Copy a file from this session to another session.

Parameters

• src – full path of the file to copy in this session

• dest_os – session to copy to

• dest – full path of the file to copy in the dest session

tasks()
Return a copy of the currently active tasks.

wait_for_tasks(raise_if_error=True)
Wait for the running tasks launched from this session.

If any errors are encountered, they are raised or returned depending on raise_if_error. Note that this
contains errors reported from silently finished tasks (tasks ran and finished in backround without explicit
wait call on them).

Tasks started from another task callback (like on_finished) are also waited here.

This is not required to call this method explictly if you use the BaseSession or the SessionManager
with the with keyword.

Parameters raise_if_error – If True, errors are raised using TaskErrors. Else the
errors are returned as a list.

walk(top, topdown=True, onerror=None, followlinks=False)
Walk the file system. Equivalent to os.walk.

10 Chapter 2. API

rcontrol Documentation, Release 0.1.3

2.1.2 SshSession

2.1.3 LocalSession

rcontrol.core.BaseSession rcontrol.local.LocalSession

class rcontrol.local.LocalSession(auto_close=True)
A session on the local machine.

2.1.4 SessionManager

class rcontrol.core.SessionManager(*args, **kwds)
A specialized OrderedDict that keep sessions instances.

It can be used like a namespace:

sess_manager.local = LocalSession()
equivalent to:
sess_manager['local'] = LocalSession()

It should be used inside a with block, to wait for pending tasks and close sessions if needed automatically.

close()
close the sessions.

wait_for_tasks(raise_if_error=True)
Wait for the running tasks lauched from the sessions.

Note that it also wait for tasks that are started from other tasks callbacks, like on_finished.

Parameters raise_if_error – if True, raise all possible encountered errors using
TaskErrors. Else the errors are returned as a list.

2.2 Tasks

A task represent an action done locally or on remote hosts. All tasks are asynchronous.

2.2.1 Abstract Task

class rcontrol.core.Task(session, on_done=None)
Represent an asynchronous task.

Parameters

• session – the session that is responsible of the task. It it accessible via the session at-
tribute on the instance.

2.2. Tasks 11

rcontrol Documentation, Release 0.1.3

• on_done – if not None, should be a callback that takes the instance task as the parameter.
It is called when the task is done (finished or timed out). If defined, error_handled()
will return True.

error()
Return an instance of a BaseTaskError or None.

error_handled()
Return True if the error must not be reported while using BaseSession.wait_for_tasks().

By default, the error is handled if on_done was specified in the constructor.

is_running()
Return True if the task is running.

raise_if_error()
Check if an error occured and raise it if any.

wait(raise_if_error=True)
Block and wait until the task is finished.

Parameters raise_if_error – if True, call raise_if_error() at the end.

2.2.2 CommandTask

rcontrol.core.CommandTaskrcontrol.core.Task

class rcontrol.core.CommandTask(session, reader_class, command, expected_exit_code=0, com-
bine_stderr=None, timeout=None, output_timeout=None,
on_finished=None, on_timeout=None, on_stdout=None,
on_stderr=None, on_done=None, finished_callback=None,
timeout_callback=None, stdout_callback=None,
stderr_callback=None)

Base class that execute a command in an asynchronous way.

It uses an internal stream reader (a subclass of streamreader.StreamsReader)

Parameters

• session – the session that run this command

• reader_class – the streamreader.StreamsReader class to use

• command – the command to execute (a string)

• expected_exit_code – the expected exit code of the command. If None, there is no
exit code expected.

• combine_stderr – if None, stderr and stdout will be automatically combined unless
stderr_callback is defined. You can force to combine stderr or stdout by passing True or
False.

• timeout – timeout in seconds for the task. If None, no timeout is set - else time-
out_callback is called if the command has not finished in time.

12 Chapter 2. API

rcontrol Documentation, Release 0.1.3

• output_timeout – timeout in seconds for waiting output. If None, no timeout is set -
else timeout_callback is called if there is no output in time.

• on_finished – a callable that takes one parameter, the command task instance. Called
when the command is finished, but not on timeout.

• on_timeout – a callable that takes one parameter, the command task instance. Called on
timeout.

• on_stdout – a callable that takes two parameter, the command task instance and the line
read. Called on line read from stdout and possibly from stderr if streams are combined..

• on_stderr – a callable that takes two parameter, the command task instance and the line
read. Called on line read from stderr.

error()
Return an instance of Exception if any, else None.

Actually check for a TimeoutError or a ExitCodeError.

exit_code()
Return the exit code of the command, or None if the command is not finished yet.

is_running()
Return True if the command is still running.

timed_out()
Return True if a timeout occured.

2.2.3 SshExec

2.2.4 LocalExec

rcontrol.core.CommandTask rcontrol.local.LocalExecrcontrol.core.Task

class rcontrol.local.LocalExec(session, command, **kwargs)
Execute a local command.

The execution starts as soon as the object is created.

Basically extend a CommandTask to pass in a specialized stream reader, ProcessReader.

Parameters

• session – instance of the LocalSession responsible of this command execution

• command – the command to execute (a string)

• kwargs – list of argument passed to the base class constructor

2.2. Tasks 13

rcontrol Documentation, Release 0.1.3

2.2.5 ThreadableTask

rcontrol.core.Task rcontrol.core.ThreadableTask

class rcontrol.core.ThreadableTask(session, callable, args, kwargs, on_done=None)
A task ran in a background thread.

2.2.6 Task exceptions

class rcontrol.core.BaseTaskError
Raised on a task error. All tasks errors inherit from this.

class rcontrol.core.TimeoutError(session, task, msg)
Raise on a command timeout error

class rcontrol.core.ExitCodeError(session, task, msg)
Raised when the exit code of a command is unexpected

class rcontrol.core.TaskErrors(errors)
A list of task errors

14 Chapter 2. API

Index

B
BaseSession (class in rcontrol.core), 9
BaseTaskError (class in rcontrol.core), 14

C
close() (rcontrol.core.BaseSession method), 9
close() (rcontrol.core.SessionManager method), 11
CommandTask (class in rcontrol.core), 12
copy_dir() (rcontrol.core.BaseSession method), 9
copy_file() (rcontrol.core.BaseSession method), 9

E
error() (rcontrol.core.CommandTask method), 13
error() (rcontrol.core.Task method), 12
error_handled() (rcontrol.core.Task method), 12
execute() (rcontrol.core.BaseSession method), 9
exists() (rcontrol.core.BaseSession method), 9
exit_code() (rcontrol.core.CommandTask method), 13
ExitCodeError (class in rcontrol.core), 14

I
is_running() (rcontrol.core.CommandTask method), 13
is_running() (rcontrol.core.Task method), 12
isdir() (rcontrol.core.BaseSession method), 9
islink() (rcontrol.core.BaseSession method), 10

L
LocalExec (class in rcontrol.local), 13
LocalSession (class in rcontrol.local), 11

M
mkdir() (rcontrol.core.BaseSession method), 10

O
open() (rcontrol.core.BaseSession method), 10

R
raise_if_error() (rcontrol.core.Task method), 12

S
s_copy_dir() (rcontrol.core.BaseSession method), 10
s_copy_file() (rcontrol.core.BaseSession method), 10
SessionManager (class in rcontrol.core), 11

T
Task (class in rcontrol.core), 11
TaskErrors (class in rcontrol.core), 14
tasks() (rcontrol.core.BaseSession method), 10
ThreadableTask (class in rcontrol.core), 14
timed_out() (rcontrol.core.CommandTask method), 13
TimeoutError (class in rcontrol.core), 14

W
wait() (rcontrol.core.Task method), 12
wait_for_tasks() (rcontrol.core.BaseSession method), 10
wait_for_tasks() (rcontrol.core.SessionManager method),

11
walk() (rcontrol.core.BaseSession method), 10

15

	Tutorial
	Executing a command on a remote host
	Synchronizing commands
	Executing local commands
	Executing commands on multiple hosts
	More on commands synchronisation
	Copy files and directories between hosts

	API
	Sessions
	Tasks

